Обновлены сведения о ходе выполнения проектов в 2014-2016 гг. в рамках федеральной целевой программы «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014 - 2020 годы»

Читать далее
16.11.2016

Обновлены сведения о ходе выполнения проектов в 2014-2016 гг. в рамках федеральной целевой программы «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014 - 2020 годы».

 

Читать далее
16.11.2016

17 июня 2016 г. (пятница) в 16:20 в конференц-зале НИФТИ ННГУ состоится расширенный семинар отдела «Физики металлов» НИФТИ ННГУ и кафедры физического материаловедения ННГУ по материалам диссертации Малова В.С. на соискание ученой степени кандидата технических наук. Приглашаются все желающие!

Читать далее
16.06.2016

Обновлены сведения о ходе выполнения проектов в 2015 г. в рамках федеральной целевой программы «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014 - 2020 годы»

Читать далее
26.04.2016

Установка AIX200RF для выращивания наногетероструктур на основе соединений A3B5 методом МОС-гидридной эпитаксии

(производство компании  Aixtron, Германия)

 

Установка МОС-гидридной эпитаксии

 

Назначение: осаждение монокристаллических пленок соединений А3В5.

 

Характеристики установки:

-       температура роста: до 1100 0С

-       давление в реакторе: от 40 до 1000 мбар с точностью ± 1 мбар

-       используемые вещества: металлоорганические прекусоры TMGa, TMAl, TMIn, арсин, фосфин; легирующие примеси (Si, C, Zn)

 

     Технология МОС-гидридной эпитаксии основана на подаче в ростовую зону исходных компонентов эпитаксиальных слоев в виде легколетучих простых веществ или соединений в потоке газа-носителя. В реакторе происходит разложение этих материалов, стимулированное термическим или иным путем, и идут химические реакции с их участием. При этом требуемые компоненты осаждаются на подложку, являющуюся основой полупроводникового прибора.

     Технология позволяет получать монокристаллические слои AlGaInAsP и всевозможные их комбинации, предназначенные для создания полупроводниковых приборов на основе А3В5, а также получать квантовые ямы, квантовые точки и дельта слои примеси. Управляя параметрами роста, можно создавать комбинации слоев А3В5 с различными параметрами по легированию. Выращенные структуры используются для производства различных полупроводниковых приборов: полупроводниковые высокомощные и одномодовые лазеры (длины волн излучения от 600 нм до 1700 нм), фотоприемники высокой чувствительности на различные диапазоны длин волн, фотокатоды, солнечные элементы с высоким коэффициентом преобразования, приборы высокочастотной техники, структуры для научных исследований. В настоящее время проводятся работы по созданию полупроводниковых квантовокаскадных лазеров, излучающих в среднем и дальнем ИК диапазоне.