18 октября состоится семинар "Органические мемристорные приборы и нейроморфные системы" (докладчик - Ерохин В.В., Курчатовский комплекс НБИКС-технологий)

Читать далее
16.10.2018

2 октября 2018 г., в 14 часов, в конференц-зале НИФТИ ННГУ, состоится семинар "Перспективные полимеры и их применение" (докладчик - д.х.н., проф. Хаширова С.Ю.).

Читать далее
01.10.2018

20 сентября 2018 г. состоится семинар производителя рентгеновских анализаторов PULSTEC INDUSTRIAL на тему "Рентгеновский контроль остаточных напряжений методом cosα"

Читать далее
18.09.2018

Коллектив НИФТИ ННГУ поздравляет Чувильдеева Владимира Николаевича с юбилеем!

Читать далее
04.09.2018

24 августа 2018 г., в 13 часов, в конференц-зале НИФТИ ННГУ состоится семинар Ю.В. Благовещенского, посвященный технологии плазмохимического синтеза нанопорошков.

Читать далее
23.08.2018

Ионно-лучевая установка ИЛУ-200 (разработка НИФТИ)

 

ИЛУ-200

 

     Назначение: модификация приповерхностных свойств твердых тел и тонких пленок, легирование полупроводников, ионно-лучевой синтез захороненных сплошных слоев и наноструктур, инженерия дефектов, а также формирование приборных слоев и структур микро-, нано- и оптоэлектроники.

 

Характеристики установки:

-       имплантируемые примеси: H, He, B, C, N, F, Ne, Si, P, Ar, As, Ga, Ge.   

-       рабочее вещество для получения ионов: газ, твердое тело.

-       максимальная масса иона: до 75 а.е.

-       энергия ионов: 50-160 кэВ.

-       ионный ток: до 500 мкА в зависимости от энергии и типа ионов.

-       облучаемая площадь: до 30×30 мм2.

-       однородность легирования: не хуже 10%.

-       возможность загрузки до 5 пластин диаметром 30 мм.

-       пределы концентраций: от 10-6 ат.% до 30 ат.%.

-       контроль профилей распределения с помощью выбора энергий ионов.

-       оснащена спектроскопической системой PGT Quantum System 4004X с детектором мягкого рентгеновского излучения IGX50129 (спектральный диапазон 180 эВ – 100 кэВ, разрешение 129 эВ при 5,9 кэВ), что позволяет исследовать химический состав, структуру и дефекты в кристаллах и упорядоченных системах непосредственно при ионном облучении.

 

     Атомы внедряемой примеси ионизируются в источнике ионов, позволяющем получить пучки ионов различных веществ. Экстрагированный из источника и сфокусированный электростатической линзой  ионный пучок ускоряется полем секционной трубки и разделяется по массам электромагнитным анализатором. Взаимодействуя с атомами мишени, ионы многократно рассеиваются, теряют энергию и останавливаются на некотором расстоянии от поверхности, обычно на глубинах 0,01-1 мкм.

 

     В последние годы получены наноматериалы, представляющие собой тонкие пленки оксидных диэлектриков (SiO2, SiO2-GeO2, Al2O3, ZrO2), содержащие массивы полупроводниковых нанокластеров или нанокристаллов (Si, SixC, SixGey), сформированные путем имплантации в исходный материал фазообразующих ионов и последующего отжига при температураз 500-1200 0С. Спектр оптического излучения материалов в видимом и ближнем ИК-диапазоне зависит от размеров нанокластеров, химического состава оксидной матрицы, и управляется путем вариации параметров ионной имплантации и отжига. Впервые установлена возможность улучшения люминесценции квантовых точек Si при ионном легировании фосфором. Предложен принципиально новый способ ионно-лучевого формирования люминесцирующих наноструктур путем облучения кремния ионами в области доз, переходных к аморфизации. Наноматериалы могут быть применены при создании устройств интегральной оптики, опто- и наноэлектроники, фотовольтаики а также в медицине.